What Pervasive Computing Brings to Automotive Consumer Experiences, Services, Products & Processes

K. Venkatesh Prasad
Infotronics Technologies Group
Ford Research Laboratory
Ford Motor Company
Dearborn, Michigan

kprasad@ford.com

May 1-2, 2001 Presented at PC2001 NIST, Gaithersberg, Maryland

What's Pervasive in the context of Computing?

A working definition:

- A broad umbrella term that implies computers everywhere --- some visible, many "hidden-away," but all networked;
- Somewhat different from Ubiquitous which also implies everywhere but doesn't imply "hidden-away."

Take one day in My life

... there are numerous

Pervasive Computing to the Consumer is about seamless (comfortable) experiences not about devices or services

Automotive Consumer Experiences

NIST PC2001 Presentation; May 1-2, 2001; For more information please contact: kprasad@ford.com

The Challenge of Service & System Design

(The Demanding) External Environment

- Physically
 - Hash
 - Unpredictable

- Electronically required to be:
 - Reliable
 - · "Always On"

(The Vehicle is a) Personal Environment

- · A dining room --- drinks
- A living room --- books
- A dressing room
- A family room --- entertainment
- Mobile/transient in nature

Internal Environment (is expected to be:)

- Safe, Secure, Private
- Comfortable and Convenient
 - Familiar and predictable
- Reliable, durable
- "Permanent"/installed in nature

A Key Challenge for Usable Pervasive Computing: Computing with the human-in-the-loop

A Brief History of the Automobile ...

- Automotive Industry is about a 100 years old
- The first fifty years 1901-1950, say, was really just trying to get the driver and passengers from point A to point B reliably.
- Going from New York to LA was a major achievement. From an engineering standpoint the focus mostly <u>component</u> engineering.

The Next Fifty Years of the Automobile System 1951-2000

- During the next fifty years 1951-2000, getting from A to B reliably was expected.
- Consumers looked for comfort, convenience, safety and security. Engineering began to take a total <u>vehicle systems approach</u>, optimizing over sub-systems such as powertrain systems, engine systems and braking systems --- to name a few. Note all these were <u>physically</u> in-vehicle sub-systems.

The 21st Century Vehicle

What's in store for the next fifty years?

- The notion of a system and all its associated controls is rapidly going beyond the physical realm of a vehicle to include what may be off-board and what may be mobile.
- Optimizing across all these distributed systems will be essential
 - to make the vehicle lighter & more fuel efficient and
 - yet be able to offer an increasing range of personalized services to enhance the mobility experience.
- Most key electrical sub-systems of a vehicle will all be networked albeit with an "intranet" like protected zone (see following slides).

Key sub-systems in an Automobile Electrical System

Drawing Courtesy Paul Nicastri, Ford Motor Company.

These on-board networked systems will interact with the off-board and mobile networks and systems (see next slide)

In-Vehicle Local Area Networks (LANs), wireless LANS and Personal Area Networks (PANs).

The Automobile System (Revised for the 21st Century ...)

... will be a system resulting from optimized distributed (pervasive?) control, communication, computing. It will be one on which (ownership) experiences will be staged using services and systems spread across personal, off-board and in-vehicle systems.

The evolution of in-vehicle computing on Ford vehicles

- Electronic Engine Control (EEC)-II --- 1978 --- Toshiba 12 bit processor --- 6 bit bytes (characters) --- Engine, Spark & Fuel control This was the only in-vehicle processor.
- EEC V --- Similar to an Intel 8096; Developed for Ford; 16 bit processor.
- PTEC --- Motorola PowerPC; 32 bit processor; Powertrain --- transmission + engine.
- Today (2001): 25-30 processors/high-end vehicle. These have remained steady for a while.
- The number of processors may increase a bit --- to handle Multimedia and Telematics --- but because these sub-systems depreciate rapidly much of the additional processing power will likely take a "plug & play" and/or personal wireless network form.

Some Recent Experiments: The Java/Jini Vehicle Architecture

Source: 2000 Automotive Jini Project
Sun Microsystems --- Ford Motor Company

Some Cross-Industry Standards Activities that Ford Motor Company in involved with:

- Ø AMI-C (Automotive Multimedia Interface Collaboration)
- Ø MOST Cooperation
- Ø Bluetooth SIG / AEG
- Ø OSGi (Open Services Gateway Interface)

Why Standards are Essential - Not Just for Carmakers

For	Modularity	Backward Compatibility	Flexibility
Consumers	•Lower replacement costs. •Easy to upgrade.	Lower cost to upgrade. Larger choice of products.	 Easily adapted to personal needs. Easily expanded to a higher level of functional performance and features if desired.
Carmakers	 Easily Configured. Easier to test and validate. Wider range of options. Shorter time-to-market for new technologies. 	 Updating new models easier at lower costs. Upgradeable older cars retain higher residual value. 	•Wide set of features available from the dealer. •Common, scalable system possible from low cost vehicles through luxury vehicles.
Component Manufacturers	Provide similar components to many carmakers lowering developmental cost. Provide larger variety of components at lower incremental costs.	Larger market for service parts. Minimizes obsolescence.	Larger market for products across car makes. Greater opportunity to use common components in variety of system configurations.
Service Providers	 Easily added hardware to support new services offered. Easily upgradeable to new technology levels. 	Larger market for services offered. Lower cost of hardware needed.	•Easily configured for new service features and functions.

Source: Ralph Robinson (rrobins2@ford.com), AMI-C & Ford Motor Company

The Automotive Multimedia Interface Collaboration (AMI-C)

- AMI-C (www.ami-c.org) is an organization of worldwide carmakers created to facilitate the development, promotion and standardization of electronic interfaces for automotive multimedia and telematics subsystems.
- Today, the members of AMI-C include the following companies and their designated affiliates:
 - Ø Fiat Auto
 - Ø Ford Motor Company
 - Ø General Motors
 - Ø Honda

- Ø Nissan
- Ø PSA Peugeot Citroen
- Ø Renault
- Ø Toyota

AMI-C Vehicle Services Interface

The VSI presents a common interface to vehicle information and control functions across different makes and models.

Source: Ed Nelson (enelson7@ford.com), AMI-C & Ford Motor Company

AMI-C Vehicle Services

- Core Services must be implemented for all vehicles
 - Identification and configuration information
 - Power management and System management
- Configured services are optional. They include:
 - vehicle status, (speed, fuel level, odometer, etc.),
 - body status and control (door locks, mirrors, seats, etc.),
 - diagnostics,
 - powertrain status,
 - entertainment system status and control, etc.
 - Human-Machine Interface (displays, speech, etc.)

Source: Ed Nelson, AMI-C & Ford Motor Company

AMI-C Vehicle Services Interface Structure

Source: Ed Nelson, AMI-C & Ford Motor Company

In Summary ... What's Automotive?

Automotive involves

Vehicle Systems that are:

- Large Scale
- Complex
- Dynamic
- Robust, Reliable over –40 deg. C to + 135 deg. C
- Reliable & Durable --- 10 years / 150 K miles.
- Low Cost
- Efficiently Manufacturable
- Efficiently Maintainable

Automotive also involves Processes

- Large, complex, globally distributed:
 - Logistical Systems
 - Financial Systems
 - Personnel Systems
 - Manufacturing Systems

All of which need to be scalable, flexible and need to be **Environmentally Sustainable**.

Pervasive computing has a role to place in all these arenas.

Concluding Remarks

- Pervasive computing design needs to explicitly include the human-inthe-loop.
- Consumers are moving away from wanting to pay for assets to wanting pay for experiences --- experiences that are seamless.
- Services are a means (of staging experiences) not the end. Services need to be robust and must compensate for the shortcomings of the underlying technologies.
- Consumers want personalization --- at home, at work, at play and on the road.
- To get more intelligence the vehicle will increasingly rely on being networked to the mobile (personal) and external environment.
- Pervasive computing will be applicable in (automotive) products and associated services, as well as in the processes needed to create and maintain the products and services.